能源杂志 2314 - 615 x 2356 - 735 x Hindawi 10.1155 / 2020/1393891 1393891 研究文章 含水率对铝粉最小可爆浓度的影响及机理研究 https://orcid.org/0000-0001-7500-1962 海盐 1 2 青果 3. 奇奇 2 https://orcid.org/0000-0001-8860-0657 2 信阳 1 2 Hustad 约翰·E。 1 矿山灾害防治国家重点实验室培育基地 山东科技大学 青岛 山东266590 中国 山东科技大学 2 采矿与安全工程学院 山东科技大学 青岛 山东266590 中国 山东科技大学 3. 经济管理学院 山东科技大学 青岛 山东266590 中国 山东科技大学 2020 19 2 2020 2020 06 09 2019 30 11 2019 31 01 2020 19 2 2020 2020 版权所有©2020陈海燕等。 这是一篇根据知识共享署名许可证发布的开放获取文章,允许在任何媒体中不受限制地使用、分发和复制,前提是原创作品被正确引用。

铝粉已广泛应用于各个行业。然而,它的高活度和高燃烧率会造成严重的爆炸风险。影响铝粉爆炸的因素很多,但没有包括水分。本文以昆山爆炸事故为例,利用20升爆炸试验装置,对不同含水率的铝粉的最小可爆浓度进行了测定。试验结果表明,铝粉的最小可爆浓度首先随含水率的增加而急剧增加,随着含水率的进一步增加,其增加趋势变缓。室温下8小时的氧化时间对铝粉最小可爆浓度无显著影响。进一步的研究表明,水分通过改变铝粉的表面氧化膜、着火和燃烧过程,降低了铝粉的爆炸风险。水分含量在0% ~ 8%范围内较低,通过抑制反应动力学和颗粒团聚,提高了铝粉最小可爆浓度;水分含量在8% ~ 20%范围内较高,通过吸热效应和氧稀释效应影响最小可爆浓度。 山东省自然科学基金资助项目 ZR2018BEE006 1.介绍</gydF4y2Batitle> <p>农业、制药、金属加工等行业的工业粉尘爆炸是安全管理的重要研究课题[<gydF4y2Baxref ref-type="bibr" rid="B1"> 1</gydF4y2Baxref>- - - - - -<gydF4y2Baxref ref-type="bibr" rid="B3"> 3.</gydF4y2Baxref>].统计分析显示,19%的爆炸事故,主要是铝粉爆炸,是由金属氧化引起的[<gydF4y2Baxref ref-type="bibr" rid="B4"> 4</gydF4y2Baxref>]微米和纳米铝粉广泛应用于各种行业[<gydF4y2Baxref ref-type="bibr" rid="B5"> 5</gydF4y2Baxref>,<gydF4y2Baxref ref-type="bibr" rid="B6"> 6</gydF4y2Baxref>]但是,如果没有适当的保护措施,它们的高活性和高燃烧率可能导致致命和毁灭性的爆炸事故[<gydF4y2Baxref ref-type="bibr" rid="B7"> 7</gydF4y2Baxref>,<gydF4y2Baxref ref-type="bibr" rid="B8"> 8</gydF4y2Baxref>].李等人[<gydF4y2Baxref ref-type="bibr" rid="B9"> 9</gydF4y2Baxref>]系统分析了2014年8月2日昆山铝粉爆炸事故,事故造成了75人死亡,185人受伤,直接经济损失35.1亿元,不仅提高了公众对铝粉爆炸风险的认识,也推动了对铝粉爆炸的研究特殊情况下的爆炸。</gydF4y2Bap> <p>铝粉爆炸是由复杂的化学反应组成的。研究集中在粒子特性的影响上[<gydF4y2Baxref ref-type="bibr" rid="B10"> 10</gydF4y2Baxref>]及外部因素[<gydF4y2Baxref ref-type="bibr" rid="B11"> 11</gydF4y2Baxref>的反应。例如,Sundaram等人[<gydF4y2Baxref ref-type="bibr" rid="B12"> 12</gydF4y2Baxref>]发现新制备的铝粉极具活性,在任何氧化环境下都能发生自发氧化反应。随着反应的进行,氧化在粒子表面产生氧化膜,使铝粒子钝化。Risha等人[<gydF4y2Baxref ref-type="bibr" rid="B13"> 13</gydF4y2Baxref>和Trunov等人[<gydF4y2Baxref ref-type="bibr" rid="B14"> 14</gydF4y2Baxref>]进一步证实铝在空气中钝化是由于形成了a 2-4 非晶态氧化物(Al)纳米层<gydF4y2Basub>2</gydF4y2Basub>O<gydF4y2Basub>3.</gydF4y2Basub>)颗粒表面阻挡铝与氧的接触。Friedman和Maček [<gydF4y2Baxref ref-type="bibr" rid="B15"> 15</gydF4y2Baxref>]研究了微米铝粉的点火过程,发现在2350℃熔化铝颗粒上的氧化层 点火需要K。由于表面张力,铝芯通过熔融氧化物外壳中形成的通道暴露于氧气中。Baudry等人[<gydF4y2Baxref ref-type="bibr" rid="B16"> 16</gydF4y2Baxref>]研究了氧化物含量对铝粉氧化行为的影响,发现随着氧化物含量的增加,铝粉的点火所需能量增加。随着氧化铝含量从0.46 wt%增加到6.3 wt%,铝粉的E50着火能增加一倍。不幸的是,据我们所知,水分含量对铝粉爆炸性能的影响很少有报道[<gydF4y2Baxref ref-type="bibr" rid="B15"> 15</gydF4y2Baxref>].</gydF4y2Bap> <p>湿被广泛用作一种特殊的惰性介质,以抑制非金属颗粒的爆炸[<gydF4y2Baxref ref-type="bibr" rid="B17"> 17</gydF4y2Baxref>,<gydF4y2Baxref ref-type="bibr" rid="B18"> 18</gydF4y2Baxref>].然而,金属粉尘,如铝粉,其性质有很大的不同,因此含水率对其爆炸的影响也不同。在铝粉加工厂中,无论是湿法抛光工艺还是湿法除尘都涉及到铝粉用水防止爆炸。然而,目前对其防爆机理的定量描述尚不清楚。令人惊讶的是,大多数粉尘爆炸试验的标准规程和程序都排除了水分含量的影响。同一爆炸参数的试验在不同的标准测量系统中要求的水分含量有显著差异。例如,美国材料测试协会[<gydF4y2Baxref ref-type="bibr" rid="B19"> 19</gydF4y2Baxref>,<gydF4y2Baxref ref-type="bibr" rid="B20"> 20</gydF4y2Baxref>]爆炸参数测量要求被测粉尘的含水量小于5%,而在中国[<gydF4y2Baxref ref-type="bibr" rid="B21"> 21</gydF4y2Baxref>,<gydF4y2Baxref ref-type="bibr" rid="B22"> 22</gydF4y2Baxref>]低于10%。除书面记录外,欧洲标准化委员会对水分含量没有具体要求[<gydF4y2Baxref ref-type="bibr" rid="B23"> 23</gydF4y2Baxref>- - - - - -<gydF4y2Baxref ref-type="bibr" rid="B25"> 25</gydF4y2Baxref>]了解水分对铝粉爆炸下限的影响将有助于在铝粉抛光过程中使用水分喷雾控制铝粉的爆炸风险。实验研究了含水量对铝粉最小爆炸浓度的影响,并提出了相关机理。为铝粉加工和抛光的安全管理提供了重要的科学指导。</gydF4y2Bap> </sec> <sec id="sec2"> <title>2.材料</gydF4y2Batitle> <sec id="sec2.1"> <title>2.1.铝粉分析</gydF4y2Batitle> <p>本工作中使用的微米球形铝粉由河南远洋粉末技术有限公司(中国河南新乡)提供。测量铝粉D10、D50、D90和D100的粒径为11.990 <gydF4y2Baitalic> μ</gydF4y2Baitalic>18.685米,<gydF4y2Baitalic> μ</gydF4y2Baitalic>m、 27.268 <gydF4y2Baitalic> μ</gydF4y2Baitalic>m、 和43.551 <gydF4y2Baitalic> μ</gydF4y2Baitalic>m,分别使用Hydro 2000MU激光粒度分析仪。数字<gydF4y2Baxref rid="fig1" ref-type="fig"> 1</gydF4y2Baxref>显示了铝粉的粒度分布。采用相应的标准方法测定铝粉中活性铝、铁、铜、硅、水的含量<gydF4y2Baxref rid="tab1" ref-type="table"> 1</gydF4y2Baxref>).</gydF4y2Bap> <fig id="fig1"> <label>图1</gydF4y2Balabel> <p>微米铝粉的粒度分布。</gydF4y2Bap> <graphic xlink:href="//www.newsama.com/downloads/journals/jen/2020/1393891.fig.001"></graphic> </fig> <table-wrap id="tab1"> <label>表1</gydF4y2Balabel> <p>铝粉的化学成分。</gydF4y2Bap> <table> <thead> <tr> <th align="left" rowspan="2">活性铝含量(%)</gydF4y2Bath> <th align="center" colspan="4">杂质含量(%)</gydF4y2Bath> </tr> <tr> <th align="center">铜</gydF4y2Bath> <th align="center">菲</gydF4y2Bath> <th align="center">如果</gydF4y2Bath> <th align="center">H<gydF4y2Basub>2</gydF4y2Basub>O</gydF4y2Bath> </tr> </thead> <tbody> <tr> <td align="left">99.79</gydF4y2Batd> <td align="center">0.0011</gydF4y2Batd> <td align="center">0.1015</gydF4y2Batd> <td align="center">0.0417</gydF4y2Batd> <td align="center">0.02</gydF4y2Batd> </tr> </tbody> </table> </table-wrap> <p>根据GB3169.1-82,采用气体容量法测定活性铝含量。根据GB3169.3-82,采用干燥失重法测定水分含量。根据GB/T6987.4-2001,采用邻二氮杂菲分光光度法测定铁含量。通过钼蓝分光光度法测定硅含量od符合GB6987.6-2001。铜含量根据GB/T6987.2-2001采用草酰二肼分光光度法测定。</gydF4y2Bap> <p>使用JSM-6510LV高-低真空扫描电子显微镜(SEM)对铝粉的形态进行成像。SEM图像如图所示<gydF4y2Baxref rid="fig2a" ref-type="fig"> 2(a)</gydF4y2Baxref>表明铝粉由分散良好、表面光滑的球形微粒组成。高分辨率SEM图像如图所示<gydF4y2Baxref rid="fig2b" ref-type="fig"> 2(b)</gydF4y2Baxref>显示颗粒表面的微小褶皱、微裂纹和小颗粒,可能是氧化铝颗粒[<gydF4y2Baxref ref-type="bibr" rid="B26"> 26</gydF4y2Baxref>].</gydF4y2Bap> <fig-group id="fig2"> <label>图2</gydF4y2Balabel> <p>铝粉的SEM图像。</gydF4y2Bap> <fig id="fig2a"> <label>(a)</gydF4y2Balabel> <graphic xlink:href="//www.newsama.com/downloads/journals/jen/2020/1393891.fig.002a"></graphic> </fig> <fig id="fig2b"> <label>(b)</gydF4y2Balabel> <graphic xlink:href="//www.newsama.com/downloads/journals/jen/2020/1393891.fig.002b"></graphic> </fig> </fig-group> </sec> <sec id="sec2.2"> <title>2.2.铝粉样品的制备</gydF4y2Batitle> <p>铝粉(3 kg)在50°C的真空中快速干燥2小时 h避免氧化、氧气、湿度等对其性能的影响[<gydF4y2Baxref ref-type="bibr" rid="B11"> 11</gydF4y2Baxref>].将干燥后的铝粉分成相等的两份,立即密封在密封袋中,并标记为样品a和样品b。</gydF4y2Bap> <sec id="sec2.2.1"> <title>2.2.1。样品a的处理</gydF4y2Batitle> <p>样品a (1.5 kg)分成10等份,分别与一定量的水混合,使其含水率达到0%、3%、5%、8%、10%、13%、15%、18%、20%、21%,记为a<gydF4y2Basub>1-10</gydF4y2Basub>.含水率是指水在水-铝粉混合物总重量中所占的重量百分比。为了保证铝粉中水分的均匀分布,将铝粉反复进行不同方向的搅拌,然后将铝粉储存在真空袋中。表格<gydF4y2Baxref rid="tab2" ref-type="table"> 2</gydF4y2Baxref>列出每个样本和图的组成<gydF4y2Baxref rid="fig3" ref-type="fig"> 3.</gydF4y2Baxref>展示了不同水分含量的代表性铝粉样品的照片。</gydF4y2Bap> <table-wrap id="tab2"> <label>表2</gydF4y2Balabel> <p>从样品a制备的具有不同水分含量的铝粉样品的组成。</gydF4y2Bap> <table> <thead> <tr> <th align="left" rowspan="2">样本</gydF4y2Bath> <th align="center" colspan="2">重量(克)</gydF4y2Bath> <th align="center" rowspan="2">含水量(%)</gydF4y2Bath> <th align="center" rowspan="2">样本</gydF4y2Bath> <th align="center" colspan="2">重量(克)</gydF4y2Bath> <th align="center" rowspan="2">含水量(%)</gydF4y2Bath> </tr> <tr> <th align="center">铝</gydF4y2Bath> <th align="center">H<gydF4y2Basub>2</gydF4y2Basub>O</gydF4y2Bath> <th align="center">铝</gydF4y2Bath> <th align="center">H<gydF4y2Basub>2</gydF4y2Basub>O</gydF4y2Bath> </tr> </thead> <tbody> <tr> <td align="left">一个<gydF4y2Basub>1</gydF4y2Basub></td> <td align="center">100.01</gydF4y2Batd> <td align="center">0</gydF4y2Batd> <td align="center">0</gydF4y2Batd> <td align="center">一个<gydF4y2Basub>6</gydF4y2Basub></td> <td align="center">100.01</gydF4y2Batd> <td align="center">14.94</gydF4y2Batd> <td align="center">13</gydF4y2Batd> </tr> <tr> <td align="left">一个<gydF4y2Basub>2</gydF4y2Basub></td> <td align="center">100.03</gydF4y2Batd> <td align="center">3.14</gydF4y2Batd> <td align="center">3.</gydF4y2Batd> <td align="center">一个<gydF4y2Basub>7</gydF4y2Basub></td> <td align="center">100.07</gydF4y2Batd> <td align="center">17.63</gydF4y2Batd> <td align="center">15</gydF4y2Batd> </tr> <tr> <td align="left">一个<gydF4y2Basub>3.</gydF4y2Basub></td> <td align="center">100.05</gydF4y2Batd> <td align="center">5.37</gydF4y2Batd> <td align="center">5</gydF4y2Batd> <td align="center">一个<gydF4y2Basub>8</gydF4y2Basub></td> <td align="center">100.04</gydF4y2Batd> <td align="center">22.03</gydF4y2Batd> <td align="center">18</gydF4y2Batd> </tr> <tr> <td align="left">一个<gydF4y2Basub>4</gydF4y2Basub></td> <td align="center">100.07</gydF4y2Batd> <td align="center">8.71</gydF4y2Batd> <td align="center">8</gydF4y2Batd> <td align="center">一个<gydF4y2Basub>9</gydF4y2Basub></td> <td align="center">100.07</gydF4y2Batd> <td align="center">25.01</gydF4y2Batd> <td align="center">20</gydF4y2Batd> </tr> <tr> <td align="left">一个<gydF4y2Basub>5</gydF4y2Basub></td> <td align="center">100.03</gydF4y2Batd> <td align="center">11.19</gydF4y2Batd> <td align="center">10</gydF4y2Batd> <td align="center">一个<gydF4y2Basub>10</gydF4y2Basub></td> <td align="center">100.02</gydF4y2Batd> <td align="center">26.54</gydF4y2Batd> <td align="center">21</gydF4y2Batd> </tr> </tbody> </table> </table-wrap> <fig id="fig3"> <label>图3</gydF4y2Balabel> <p>不同水分含量的代表性铝粉样品照片。</gydF4y2Bap> <graphic xlink:href="//www.newsama.com/downloads/journals/jen/2020/1393891.fig.003"></graphic> </fig> <p>水分含量在2 ~ 6%范围内的样品表现出明显的团聚行为,团聚体粒径变化显著。当含水率增加到15%时,颗粒尺寸变得更加均匀。当水分含量增加到21%时,固-液相分离,没有团聚现象。水-铝粉混合物变得异质,但具有爆炸性。然而,没有进行最小可爆浓度的试验。</gydF4y2Bap> </sec> <sec id="sec2.2.2"> <title>2.2.2.样品b的处理</gydF4y2Batitle> <p>样品b (1.5 kg)分成4份等量,加水滴加,用抹刀均质,在50℃烘箱中烘干2小时。其中一个子样品被分成三等份(100 g),加入水,分别达到0%、5%和15%的含水量,记为b<gydF4y2Basub>1</gydF4y2Basub>b<gydF4y2Basub>2</gydF4y2Basub>, b<gydF4y2Basub>3.</gydF4y2Basub>.其余3个干燥的子样品滴加7.5 mL水,均质并在40℃下分别干燥4 h、6 h、8 h。同样,每一个子样品被分成三等份,并与水混合,分别达到含水量0%,5%,15%,记为b<gydF4y2Basub>4</gydF4y2Basub>-b<gydF4y2Basub>12</gydF4y2Basub>如表所示<gydF4y2Baxref rid="tab3" ref-type="table"> 3.</gydF4y2Baxref>.</gydF4y2Bap> <table-wrap id="tab3"> <label>表3</gydF4y2Balabel> <p>用样品b制备的样品的成分。</gydF4y2Bap> <table> <thead> <tr> <th align="left" rowspan="2">样本</gydF4y2Bath> <th align="center" colspan="2">质量(g)</gydF4y2Bath> <th align="center" rowspan="2">含水量(%)</gydF4y2Bath> <th align="center" rowspan="2">氧化时间(小时)</gydF4y2Bath> <th align="center" rowspan="2">样本</gydF4y2Bath> <th align="center" colspan="2">质量(g)</gydF4y2Bath> <th align="center" rowspan="2">含水量(%)</gydF4y2Bath> <th align="center" rowspan="2">氧化时间(小时)</gydF4y2Bath> </tr> <tr> <th align="center">铝</gydF4y2Bath> <th align="center">H<gydF4y2Basub>2</gydF4y2Basub>O</gydF4y2Bath> <th align="center">铝</gydF4y2Bath> <th align="center">H<gydF4y2Basub>2</gydF4y2Basub>O</gydF4y2Bath> </tr> </thead> <tbody> <tr> <td align="left">b<gydF4y2Basub>1</gydF4y2Basub></td> <td align="center">1000.4</gydF4y2Batd> <td align="center">0</gydF4y2Batd> <td align="center">0</gydF4y2Batd> <td align="center">2</gydF4y2Batd> <td align="center">b<gydF4y2Basub>7</gydF4y2Basub></td> <td align="center">100.00</gydF4y2Batd> <td align="center">0</gydF4y2Batd> <td align="center">0</gydF4y2Batd> <td align="center">6</gydF4y2Batd> </tr> <tr> <td align="left">b<gydF4y2Basub>2</gydF4y2Basub></td> <td align="center">100.07</gydF4y2Batd> <td align="center">5.34</gydF4y2Batd> <td align="center">5</gydF4y2Batd> <td align="center">2</gydF4y2Batd> <td align="center">b<gydF4y2Basub>8</gydF4y2Basub></td> <td align="center">100.00</gydF4y2Batd> <td align="center">5.31</gydF4y2Batd> <td align="center">5</gydF4y2Batd> <td align="center">6</gydF4y2Batd> </tr> <tr> <td align="left">b<gydF4y2Basub>3.</gydF4y2Basub></td> <td align="center">100.04</gydF4y2Batd> <td align="center">17.63</gydF4y2Batd> <td align="center">15</gydF4y2Batd> <td align="center">2</gydF4y2Batd> <td align="center">b<gydF4y2Basub>9</gydF4y2Basub></td> <td align="center">100.07</gydF4y2Batd> <td align="center">17.61</gydF4y2Batd> <td align="center">15</gydF4y2Batd> <td align="center">6</gydF4y2Batd> </tr> <tr> <td align="left">b<gydF4y2Basub>4</gydF4y2Basub></td> <td align="center">100.01</gydF4y2Batd> <td align="center">0</gydF4y2Batd> <td align="center">0</gydF4y2Batd> <td align="center">4</gydF4y2Batd> <td align="center">b<gydF4y2Basub>10</gydF4y2Basub></td> <td align="center">100.09</gydF4y2Batd> <td align="center">0</gydF4y2Batd> <td align="center">0</gydF4y2Batd> <td align="center">8</gydF4y2Batd> </tr> <tr> <td align="left">b<gydF4y2Basub>5</gydF4y2Basub></td> <td align="center">100.05</gydF4y2Batd> <td align="center">5.38</gydF4y2Batd> <td align="center">5</gydF4y2Batd> <td align="center">4</gydF4y2Batd> <td align="center">b<gydF4y2Basub>11</gydF4y2Basub></td> <td align="center">100.05</gydF4y2Batd> <td align="center">5.31</gydF4y2Batd> <td align="center">5</gydF4y2Batd> <td align="center">8</gydF4y2Batd> </tr> <tr> <td align="left">b<gydF4y2Basub>6</gydF4y2Basub></td> <td align="center">100.05</gydF4y2Batd> <td align="center">17.61</gydF4y2Batd> <td align="center">15</gydF4y2Batd> <td align="center">4</gydF4y2Batd> <td align="center">b<gydF4y2Basub>12</gydF4y2Basub></td> <td align="center">100.02</gydF4y2Batd> <td align="center">17.60</gydF4y2Batd> <td align="center">15</gydF4y2Batd> <td align="center">8</gydF4y2Batd> </tr> </tbody> </table> </table-wrap> </sec> </sec> </sec> <sec id="sec3"> <title>3.设备和实验程序</gydF4y2Batitle> <sec id="sec3.1"> <title>3.1.实验装置</gydF4y2Batitle> <p>铝粉的爆炸参数与实验设备、实验条件等密切相关[<gydF4y2Baxref ref-type="bibr" rid="B11"> 11</gydF4y2Baxref>].在本工作中,铝粉尘爆炸实验是在一个标准的20升不锈钢球形容器中进行的(图)<gydF4y2Baxref rid="fig4" ref-type="fig"> 4</gydF4y2Baxref>)根据国际标准ISO6184-1,首先将爆炸室部分抽真空至0.06 将分散空气压力设置为2 MPa MPa.当储尘容器和试验室之间的电磁阀自动打开时,空气和煤尘分散到爆炸室中。60℃时,化学点火器通电 ms延迟。铝粉通过位于容器中心的点火器进行化学点火。通过爆炸容器壁上的压力传感器收集0-1.0范围内的数据 在1000赫兹下,兆帕。爆炸由一个连接到计算机的喷射点火继电器控制器控制。气体分配系统由一个高压储气罐和一个泄压阀组成。</gydF4y2Bap> <fig id="fig4"> <label>图4</gydF4y2Balabel> <p>20升球形爆炸试验装置。</gydF4y2Bap> <graphic xlink:href="//www.newsama.com/downloads/journals/jen/2020/1393891.fig.004"></graphic> </fig> </sec> <sec id="sec3.2"> <title>3.2.标准的实验协议</gydF4y2Batitle> <p>试验按照EN14034-3:2006和GB/T16425的要求进行了粉尘最小可爆浓度的测定。用烟火点火装置对铝粉进行化学点火,输出几个1kj点火器。含40%锆粉、30%硝酸钡、30%过氧化钡的化学点火器重量为0.48 g。为保证有效点火,减少实验误差,用电子天平对点火剂称重,精度为0.01 g。</gydF4y2Bap> <p>粉尘爆炸试验通常是在一定浓度范围内测定最小可爆浓度。如果点火产生的最大压力等于或大于0.15 MPa,则认为该反应发生爆炸。如果发生爆炸,则降低粉尘浓度进行进一步的爆炸试验,直至同一实验条件下连续三次产生的最大压力小于0.15 MPa。可爆炸粉尘的实验最低浓度(<gydF4y2Bainline-formula> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"> <mml:msub> <mml:mrow> <mml:mi> C</米米l:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant="normal"> 闵</米米l:mi> </mml:mrow> </mml:msub> </mml:math> </inline-formula>)在最高浓度之间,以产生小于0.15的压力 在连续三次试验中的最大压力(MPa)(<gydF4y2Bainline-formula> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"> <mml:msub> <mml:mrow> <mml:mi> C</米米l:mi> </mml:mrow> <mml:mrow> <mml:mn> 1</米米l:mn> </mml:mrow> </mml:msub> </mml:math> </inline-formula>)及连续三次试验产生的压力等于或大于0.15 MPa的最高浓度(<gydF4y2Bainline-formula> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M3"> <mml:msub> <mml:mrow> <mml:mi> C</米米l:mi> </mml:mrow> <mml:mrow> <mml:mn> 2</米米l:mn> </mml:mrow> </mml:msub> </mml:math> </inline-formula>),例如,<gydF4y2Badisp-formula> <mml:math display="block" xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M4"> <mml:mtable> <mml:mlabeledtr id="eq1"> <mml:mtd> <mml:mtext> (1)</米米l:mtext> </mml:mtd> <mml:mtd> <mml:msub> <mml:mrow> <mml:mi> C</米米l:mi> </mml:mrow> <mml:mrow> <mml:mn> 1</米米l:mn> </mml:mrow> </mml:msub> <mml:mo> <</米米l:mo> <mml:msub> <mml:mrow> <mml:mi> C</米米l:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant="normal"> 闵</米米l:mi> </mml:mrow> </mml:msub> <mml:mo> <</米米l:mo> <mml:msub> <mml:mrow> <mml:mi> C</米米l:mi> </mml:mrow> <mml:mrow> <mml:mn> 2</米米l:mn> </mml:mrow> </mml:msub> </mml:mtd> </mml:mlabeledtr> </mml:mtable> </mml:math> </disp-formula></p> <p>出于统计目的,我们定义<gydF4y2Bainline-formula> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M5"> <mml:msub> <mml:mrow> <mml:mi> C</米米l:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant="normal"> 闵</米米l:mi> </mml:mrow> </mml:msub> <mml:mo> =</米米l:mo> <mml:msub> <mml:mrow> <mml:mi> C</米米l:mi> </mml:mrow> <mml:mrow> <mml:mn> 2</米米l:mn> </mml:mrow> </mml:msub> </mml:math> </inline-formula>针对目前工作中的铝粉。</gydF4y2Bap> </sec> <sec id="sec3.3"> <title>3.3.实验过程</gydF4y2Batitle> <p>将一定量的铝粉称量后,迅速放入垃圾箱,并密封。用真空泵将爆炸容器抽真空至绝对压力0.06 MPa。同时,通过调节减压阀和针阀,向气室内充入干燥空气,使绝对压力为2.0 MPa。然后启动数据采集。铝粉通过电磁阀喷射,由点火系统点火。爆炸压力由压力传感器记录下来。每次爆炸试验结束后,对爆炸容器和粉尘仓进行彻底清理,更换点火头。</gydF4y2Bap> </sec> </sec> <sec id="sec4"> <title>4.结果</gydF4y2Batitle> <sec id="sec4.1"> <title>4.1.含水量对铝粉最小爆炸浓度的影响</gydF4y2Batitle> <p>数字<gydF4y2Baxref rid="fig5" ref-type="fig"> 5</gydF4y2Baxref>显示了不同水分含量铝粉的最大爆炸压力。不同水分含量铝粉的最大爆炸压力<gydF4y2Bainline-formula> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M6"> <mml:mtext> wt</米米l:mtext> <mml:mi> %</米米l:mi> <mml:mo> =</米米l:mo> <mml:mn> 0</米米l:mn> </mml:math> </inline-formula>和<gydF4y2Bainline-formula> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M7"> <mml:mi> ρ</米米l:mi> <mml:mo> =</米米l:mo> <mml:mn> 40</米米l:mn> <mml:mtext> </mml:mtext> <mml:mtext> g</米米l:mtext> <mml:mo> /</米米l:mo> <mml:mtext> 米</米米l:mtext> <mml:mn> 3.</米米l:mn> </mml:math> </inline-formula>连续三次测试超过0.15 MPa。因此,确定干铝粉爆炸下限为40 g/m<gydF4y2Basup>3.</gydF4y2Basup>桌子<gydF4y2Baxref rid="tab4" ref-type="table"> 4</gydF4y2Baxref>列出了不同水分含量的铝粉的最小爆炸浓度。</gydF4y2Bap> <fig id="fig5"> <label>图5</gydF4y2Balabel> <p>不同含水量铝粉的最大爆炸压力。</gydF4y2Bap> <graphic xlink:href="//www.newsama.com/downloads/journals/jen/2020/1393891.fig.005"></graphic> </fig> <table-wrap id="tab4"> <label>表4</gydF4y2Balabel> <p>不同水分含量铝粉的最小可爆浓度。</gydF4y2Bap> <table> <thead> <tr> <th align="left">样本</gydF4y2Bath> <th align="center">MEC (g / m<gydF4y2Basup>3.</gydF4y2Basup>)</gydF4y2Bath> <th align="center">样本</gydF4y2Bath> <th align="center">MEC (g / m<gydF4y2Basup>3.</gydF4y2Basup>)</gydF4y2Bath> <th align="center">样本</gydF4y2Bath> <th align="center">MEC (g / m<gydF4y2Basup>3.</gydF4y2Basup>)</gydF4y2Bath> </tr> </thead> <tbody> <tr> <td align="left">一个<gydF4y2Basub>1</gydF4y2Basub></td> <td align="center">40</gydF4y2Batd> <td align="center">一个<gydF4y2Basub>4</gydF4y2Basub></td> <td align="center">60</gydF4y2Batd> <td align="center">一个<gydF4y2Basub>7</gydF4y2Basub></td> <td align="center">65</gydF4y2Batd> </tr> <tr> <td align="left">一个<gydF4y2Basub>2</gydF4y2Basub></td> <td align="center">50</gydF4y2Batd> <td align="center">一个<gydF4y2Basub>5</gydF4y2Basub></td> <td align="center">60</gydF4y2Batd> <td align="center">一个<gydF4y2Basub>8</gydF4y2Basub></td> <td align="center">60</gydF4y2Batd> </tr> <tr> <td align="left">一个<gydF4y2Basub>3.</gydF4y2Basub></td> <td align="center">55</gydF4y2Batd> <td align="center">一个<gydF4y2Basub>6</gydF4y2Basub></td> <td align="center">60</gydF4y2Batd> <td align="center">一个<gydF4y2Basub>9</gydF4y2Basub></td> <td align="center">65</gydF4y2Batd> </tr> </tbody> </table> </table-wrap> <p>数字<gydF4y2Baxref rid="fig6" ref-type="fig"> 6</gydF4y2Baxref>给出了铝粉最小可爆浓度随含水率的变化规律。可见,最小可爆浓度首先随着含水率的增加而迅速增加,随着含水率的进一步增加其增加趋势变缓。它从40克/米线性增加50%<gydF4y2Basup>3.</gydF4y2Basup>到60 g / m<gydF4y2Basup>3.</gydF4y2Basup>随着含水率从0%增加到8%,且仅逐渐增加8.3%,如从60 g/m<gydF4y2Basup>3.</gydF4y2Basup>到65岁 克/米<gydF4y2Basup>3.</gydF4y2Basup>,因为含水量进一步增加到20%。值得注意的是,即使水分降低了铝粉的爆炸风险,铝粉仍然具有爆炸性。此外,还比较了其对煤粉等非金属粉尘的影响[<gydF4y2Baxref ref-type="bibr" rid="B27"> 27</gydF4y2Baxref>],水分对抑制铝粉爆炸效果较差,这对于铝粉加工抛光的防爆指导意义重大。</gydF4y2Bap> <fig id="fig6"> <label>图6</gydF4y2Balabel> <p>铝粉最小可爆浓度随含水率的变化规律。</gydF4y2Bap> <graphic xlink:href="//www.newsama.com/downloads/journals/jen/2020/1393891.fig.006"></graphic> </fig> </sec> <sec id="sec4.2"> <title>4.2. 氧化时间对铝粉最小爆炸浓度的影响</gydF4y2Batitle> <p>数字<gydF4y2Baxref rid="fig7" ref-type="fig"> 7</gydF4y2Baxref>显示了不同水分含量的铝粉在氧化2 h、4 h、6 h和8 h时的最大爆炸压力。表格<gydF4y2Baxref rid="tab5" ref-type="table"> 5</gydF4y2Baxref>列出相应的最小可爆浓度。氧化2 h、4 h、6 h、8 h的干燥铝粉的最小可爆浓度为40 g/m<gydF4y2Basup>3.</gydF4y2Basup>.增加水分含量至5 wt%和15 wt%可使其最小可爆浓度增加至55 g/m<gydF4y2Basup>3.</gydF4y2Basup>和65 克/米<gydF4y2Basup>3.</gydF4y2Basup>,分别。结果表明,水分是铝粉最小可爆浓度增加的主要原因,氧化时间短对其最小可爆浓度无显著影响。</gydF4y2Bap> <fig id="fig7"> <label>图7</gydF4y2Balabel> <p>不同水分含量的铝粉在氧化2h、4h、6h和8h时爆炸压力最大。</gydF4y2Bap> <graphic xlink:href="//www.newsama.com/downloads/journals/jen/2020/1393891.fig.007"></graphic> </fig> <table-wrap id="tab5"> <label>表5</gydF4y2Balabel> <p>不同水分含量的铝粉的最小爆炸浓度氧化时间不同。</gydF4y2Bap> <table> <thead> <tr> <th align="left">样本</gydF4y2Bath> <th align="center">MEC (g / m<gydF4y2Basup>3.</gydF4y2Basup>)</gydF4y2Bath> <th align="center">样本</gydF4y2Bath> <th align="center">MEC (g / m<gydF4y2Basup>3.</gydF4y2Basup>)</gydF4y2Bath> <th align="center">样本</gydF4y2Bath> <th align="center">MEC (g / m<gydF4y2Basup>3.</gydF4y2Basup>)</gydF4y2Bath> <th align="center">样本</gydF4y2Bath> <th align="center">MEC (g / m<gydF4y2Basup>3.</gydF4y2Basup>)</gydF4y2Bath> </tr> </thead> <tbody> <tr> <td align="left">b<gydF4y2Basub>1</gydF4y2Basub></td> <td align="center">40</gydF4y2Batd> <td align="center">b<gydF4y2Basub>4</gydF4y2Basub></td> <td align="center">40</gydF4y2Batd> <td align="center">b<gydF4y2Basub>7</gydF4y2Basub></td> <td align="center">40</gydF4y2Batd> <td align="center">b<gydF4y2Basub>10</gydF4y2Basub></td> <td align="center">40</gydF4y2Batd> </tr> <tr> <td align="left">b<gydF4y2Basub>2</gydF4y2Basub></td> <td align="center">55</gydF4y2Batd> <td align="center">b<gydF4y2Basub>5</gydF4y2Basub></td> <td align="center">55</gydF4y2Batd> <td align="center">b<gydF4y2Basub>8</gydF4y2Basub></td> <td align="center">55</gydF4y2Batd> <td align="center">b<gydF4y2Basub>11</gydF4y2Basub></td> <td align="center">55</gydF4y2Batd> </tr> <tr> <td align="left">b<gydF4y2Basub>3.</gydF4y2Basub></td> <td align="center">65</gydF4y2Batd> <td align="center">b<gydF4y2Basub>6</gydF4y2Basub></td> <td align="center">65</gydF4y2Batd> <td align="center">b<gydF4y2Basub>9</gydF4y2Basub></td> <td align="center">65</gydF4y2Batd> <td align="center">b<gydF4y2Basub>12</gydF4y2Basub></td> <td align="center">65</gydF4y2Batd> </tr> </tbody> </table> </table-wrap> </sec> </sec> <sec id="sec5"> <title>5.讨论</gydF4y2Batitle> <p>水分对铝粉爆炸的抑制主要是通过改变铝粉表面的氧化膜,影响其点火燃烧过程[<gydF4y2Baxref ref-type="bibr" rid="B28"> 28</gydF4y2Baxref>- - - - - -<gydF4y2Baxref ref-type="bibr" rid="B30"> 30</gydF4y2Baxref>].微米铝粉因其大的比表面积而具有很高的化学活性。表面氧化膜能抑制其与水、氧的化学反应。微米铝粉爆炸是一个非常复杂的非稳态气固两相反应。在它爆炸时,水分可以作为一种抗爆剂。</gydF4y2Bap> <sec id="sec5.1"> <title>5.1.水分对铝粉表面氧化膜的影响</gydF4y2Batitle> <p>叶等人[<gydF4y2Baxref ref-type="bibr" rid="B31"> 31</gydF4y2Baxref>]提出了铝在室温下的氧化机理<gydF4y2Basub>2</gydF4y2Basub>O<gydF4y2Basub>3.</gydF4y2Basub>薄膜在室温下能保持铝粉的化学稳定性。简单地说,微米铝粉颗粒吸附游离氧暴露在空气中。吸附在粒子表面的氧原子和铝被转化为O<gydF4y2Basup>2-</gydF4y2Basup>和艾尔<gydF4y2Basup>3+</gydF4y2Basup>分别通过电子转移,最终形成Al<gydF4y2Basub>2</gydF4y2Basub>O<gydF4y2Basub>3.</gydF4y2Basub>层在粒子表面下强诱导偶极子/偶极子。中性粒子表面吸附形成的初始氧化层在静电力作用下产生压力梯度,导致Al的取向转移<gydF4y2Basup>3+</gydF4y2Basup>以及<gydF4y2Basup>2-</gydF4y2Basup>.美联<gydF4y2Basub>2</gydF4y2Basub>O<gydF4y2Basub>3.</gydF4y2Basub>该层通过氧化剂(质子H)持续生长<gydF4y2Basup>+</gydF4y2Basup>)在金属氧化物界面转移。由于空间位阻的存在,静电力逐渐减小,最终达到平衡状态。然后停止氧化层的生长(图<gydF4y2Baxref rid="fig8" ref-type="fig"> 8</gydF4y2Baxref>)曾先生等[<gydF4y2Baxref ref-type="bibr" rid="B32"> 32</gydF4y2Baxref>]发现铝的平均厚度<gydF4y2Basub>2</gydF4y2Basub>O<gydF4y2Basub>3.</gydF4y2Basub>微米铝颗粒表面的膜层随平均粒径呈指数增长。例如铝的厚度<gydF4y2Basub>2</gydF4y2Basub>O<gydF4y2Basub>3.</gydF4y2Basub>10层<gydF4y2Baitalic> μ</gydF4y2Baitalic>发现M粒子的波长为17 nm,而在100粒子上的波长为100 nm<gydF4y2Baitalic> μ</gydF4y2Baitalic>M的厚度为54.8 nm。稠密而稳定的Al<gydF4y2Basub>2</gydF4y2Basub>O<gydF4y2Basub>3.</gydF4y2Basub>由于铝粉点火时需要更多的能量对铝进行破坏,使得铝颗粒的稳定性得以维持<gydF4y2Basub>2</gydF4y2Basub>O<gydF4y2Basub>3.</gydF4y2Basub>层。</gydF4y2Bap> <fig id="fig8"> <label>图8</gydF4y2Balabel> <p>铝粉在室温下的氧化机理。</gydF4y2Bap> <graphic xlink:href="//www.newsama.com/downloads/journals/jen/2020/1393891.fig.008"></graphic> </fig> <p>在我们的实验中,致密而稳定的铝表面可以形成一层薄薄的水膜<gydF4y2Basub>2</gydF4y2Basub>O<gydF4y2Basub>3.</gydF4y2Basub>铝粉暴露在潮湿环境下形成的薄膜,作为介质液体促进铝的水化<gydF4y2Basub>2</gydF4y2Basub>O<gydF4y2Basub>3.</gydF4y2Basub>.水化过程中,氧化膜中的Al- o -Al键被打破,与水形成Al-OH键,产生高热稳定性的AlOOH和Al(OH)<gydF4y2Basub>3.</gydF4y2Basub>.为了使铝粉着火而破坏氢氧化物膜需要更高的能量。因此,防潮能抑制铝粉的爆炸。然而,铝的水合作用<gydF4y2Basub>2</gydF4y2Basub>O<gydF4y2Basub>3.</gydF4y2Basub>在低温下是一个非常缓慢的过程。AlOOH和Al(OH)<gydF4y2Basub>3.</gydF4y2Basub>而氢氧化膜的抑制作用可由较高的点火能量(10 kJ)来抑制,如“覆盖效应”[<gydF4y2Baxref ref-type="bibr" rid="B33"> 33</gydF4y2Baxref>].因此,氧化时间对铝粉最小可爆浓度没有显著影响。</gydF4y2Bap> </sec> <sec id="sec5.2"> <title>5.2.水分对铝粉着火和燃烧的抑制作用</gydF4y2Batitle> <p>粉尘(作为产品或副产品获得)的爆炸性可能取决于所有变量。自然的结果是需要仔细的过程控制,因为控制可能会影响工厂爆炸的风险。我们的研究也强调了粉尘爆炸危险性评估过程中适当的采样阶段的重要性,因为采样阶段对粉尘细粒含量的影响很大,从而影响粉尘的性质[<gydF4y2Baxref ref-type="bibr" rid="B34"> 34</gydF4y2Baxref>]空气中的粉尘燃烧有两种类型:均匀燃烧,即气相燃烧和非均匀燃烧[<gydF4y2Baxref ref-type="bibr" rid="B35"> 35</gydF4y2Baxref>].Howard和Essenhigh [<gydF4y2Baxref ref-type="bibr" rid="B36"> 36</gydF4y2Baxref>]发现粉尘燃烧受粉尘粒径影响较大,随着粉尘粒径的增大,由不均匀燃烧逐渐演变为气相燃烧。水分通过吸热过程、氧气稀释、抑制反应动力学、颗粒团聚等方式影响铝粉的点火和燃烧[<gydF4y2Baxref ref-type="bibr" rid="B27"> 27</gydF4y2Baxref>].不同燃烧机理的影响因素不同,影响燃烧的方式也不同。水没有化学专一性,只是一种热猝灭剂。如果在爆炸中很早就使用它,它在驱散初期爆炸时有一定的效果。然而,在这个过程中,也有促进铝粉爆炸发生的行为。当发生吸附水时,产生氢气,导致爆炸强度增大。将水与铝的有效接触时间缩短为爆炸持续时间,可起到抑制作用。</gydF4y2Bap> <p>微米铝粉由于亲水性强,在水分含量0-8%范围内聚集严重,燃烧不均匀。在非均匀燃烧机理中,燃烧发生在颗粒表面,因此氧向颗粒表面扩散的速率是影响爆炸的关键因素。在10kj的点火能量下,水由液相转变为气相。水蒸气增加了氧扩散阻力和火焰传播,从而降低了粉尘的燃烧速率。因此,水分通过抑制化学反应动力学来抑制铝粉爆炸,且随着水分含量的增加,抑制作用逐渐减弱。此外,铝颗粒表面的水分会显著减小颗粒之间的有效距离,导致颗粒之间有很强的吸引力,产生团聚倾向。铝粉颗粒破碎中的水分会在部分颗粒之间形成液桥,造成颗粒团聚。因此,微米级铝粉颗粒的微观结构也有助于颗粒的团聚。团聚削弱了颗粒的分散,从而增大了铝粉的粒径。随着含水率的增加,团聚现象更加明显,最终成为抑制铝粉燃烧的主要因素。 However, the aluminum powder particle agglomeration stops as the particle size increased to a certain value at a certain moisture content. During this process, moisture inhibits the aluminum powder combustion by the endothermic processes and oxygen dilution. As the moisture content increased to over 8%, the water film formed on the particle surface absorbs heat directly from the particle surfaces, the chemical ignition agent, the flame, and the combustion products, resulting in higher temperature. It also consumes the energy during liquid-gas phase transformation, which dominates the energy consumption. It is worth noting that the endothermic processes and oxygen dilution mainly rely on the liquid-gas phase transition of water. They inhibit the heat transfers of ignitor-aluminum powder and combusted aluminum powder-aluminum powder, and the inhibition effect is gradually weakened with the increase of moisture content. The water vapor generated during the phase transition inevitably decreases the oxygen content in the air, which in turn reduces the oxygen gradient between the environment and the combustion zone. The amount of water vapor is decreased as the moisture content increased. Therefore, the explosion inhibition effect of the endothermic processes and oxygen dilution are negatively correlated with moisture content, which also explains the explosivity of the micron aluminum powder with the moisture content of 21%.</p> </sec> </sec> <sec id="sec6"> <title>6.结论</gydF4y2Batitle> <p>本文研究了含水率对铝粉爆炸的影响。结果表明,水分可以降低铝粉的爆炸风险。铝粉最小可爆浓度由40 g/m提高50%<gydF4y2Basup>3.</gydF4y2Basup>到60 g / m<gydF4y2Basup>3.</gydF4y2Basup>,随着含水率从0%增加到8%,增加了8.3%,达到65 g/m<gydF4y2Basup>3.</gydF4y2Basup>,随着含水量进一步增加至20%。然而,铝粉在40℃下氧化8 h并没有显著改变最小爆炸浓度,主要是因为铝的水合作用<gydF4y2Basub>2</gydF4y2Basub>O<gydF4y2Basub>3.</gydF4y2Basub>这是一个缓慢的过程。少量AlOOH和Al(OH)的影响<gydF4y2Basub>3.</gydF4y2Basub>由水化作用形成的高点火能量(10 kJ)可以覆盖。进一步的研究表明,水分通过改变铝粉表面的氧化膜,抑制其着火和燃烧,从而抑制了铝粉的爆炸。含水率为0 ~ 8%时,抑制作用主要来自于抑制反应动力学和颗粒团聚作用;含水率为8 ~ 20%时,抑制作用主要来自于吸热过程和氧气稀释作用。当含水率增加到21%时,固液相分离,导致体系不均匀。然而,在相分离状态下的铝粉仍然具有爆炸性。</gydF4y2Bap> </sec> <back> <sec sec-type="data-availability"> <title>数据可用性</gydF4y2Batitle> <p>用于支持本研究发现的数据可由通讯作者要求提供。</gydF4y2Bap> </sec> <sec sec-type="COI-statement"> <title>的利益冲突</gydF4y2Batitle> <p>两位作者宣称他们没有相互竞争的利益。</gydF4y2Bap> </sec> <ack> <title>致谢</gydF4y2Batitle> <p>作者感谢中国煤炭工业集团重庆研究院有限公司允许发表本文。作者要感谢山东省自然科学基金(ZR2018BEE00)的支持。</gydF4y2Bap> </ack> <ref-list> <ref id="B1" content-type="article"> <label>1</gydF4y2Balabel> <element-citation publication-type="journal"> <person-group person-group-type="author"> <name> <surname> Amyotte</gydF4y2Basurname> <given-names> 公关部。</ggydF4y2Baiven-names> </name> <name> <surname> 桑德拉让</gydF4y2Basurname> <given-names> R</ggydF4y2Baiven-names> </name> <name> <surname> 佩格</gydF4y2Basurname> <given-names> M.J。</ggydF4y2Baiven-names> </name> </person-group> <article-title> 硫化铁粉尘最低点火温度的研究</一个rticle-title> <source> <italic> 危险材料杂志</gydF4y2Baitalic> <year> 2003</gydF4y2Bayear> <volume> 97</gydF4y2Bavolume> <issue> 1-3</gydF4y2Baissue> <fpage> 1</gydF4y2Bafpage> <lpage> 9</gydF4y2Balpage> <pub-id pub-id-type="doi"> 10.1016/s0304-3894(02)00220-0</gydF4y2Bapub-id> <pub-id pub-id-type="other"> 2 - s2.0 - 0037469961</gydF4y2Bapub-id> <pub-id pub-id-type="pmid"> 12573825</gydF4y2Bapub-id> </element-citation> </ref> <ref id="B2" content-type="article"> <label>2</gydF4y2Balabel> <element-citation publication-type="journal"> <person-group person-group-type="author"> <name> <surname> 迪福</gydF4y2Basurname> <given-names> O。</ggydF4y2Baiven-names> </name> <name> <surname> 特拉奥雷</gydF4y2Basurname> <given-names> M。</ggydF4y2Baiven-names> </name> <name> <surname> 佩林</gydF4y2Basurname> <given-names> l</ggydF4y2Baiven-names> </name> <name> <surname> 查泽莱</gydF4y2Basurname> <given-names> s</ggydF4y2Baiven-names> </name> <name> <surname> 托马斯</gydF4y2Basurname> <given-names> D。</ggydF4y2Baiven-names> </name> </person-group> <article-title> 铝粉尘在20l球体中爆炸的实验研究与模拟</一个rticle-title> <source> <italic> 过程工业损失预防杂志</gydF4y2Baitalic> <year> 2010</gydF4y2Bayear> <volume> 23</gydF4y2Bavolume> <issue> 2</gydF4y2Baissue> <fpage> 226</gydF4y2Bafpage> <lpage> 236</gydF4y2Balpage> <pub-id pub-id-type="doi"> 10.1016/j.jlp.2009.07.019</gydF4y2Bapub-id> <pub-id pub-id-type="other"> 2 - s2.0 - 75849119898</gydF4y2Bapub-id> </element-citation> </ref> <ref id="B3" content-type="article"> <label>3.</gydF4y2Balabel> <element-citation publication-type="journal"> <person-group person-group-type="author"> <name> <surname> 松田</gydF4y2Basurname> <given-names> T</ggydF4y2Baiven-names> </name> <name> <surname> Yashima</gydF4y2Basurname> <given-names> M。</ggydF4y2Baiven-names> </name> <name> <surname> 尼富库</gydF4y2Basurname> <given-names> M。</ggydF4y2Baiven-names> </name> <name> <surname> 榎本失败</gydF4y2Basurname> <given-names> H。</ggydF4y2Baiven-names> </name> </person-group> <article-title> 金属粉尘爆炸试验与评价中的几个问题</一个rticle-title> <source> <italic> 过程工业损失预防杂志</gydF4y2Baitalic> <year> 2001</gydF4y2Bayear> <volume> 14</gydF4y2Bavolume> <issue> 6</gydF4y2Baissue> <fpage> 449</gydF4y2Bafpage> <lpage> 453</gydF4y2Balpage> <pub-id pub-id-type="doi"> 10.1016 / s0950 - 4230 (01) 00033 - x</gydF4y2Bapub-id> <pub-id pub-id-type="other"> 2 - s2.0 - 0035513306</gydF4y2Bapub-id> </element-citation> </ref> <ref id="B4" content-type="book"> <label>4</gydF4y2Balabel> <element-citation publication-type="book"> <person-group person-group-type="author"> <name> <surname> Grossel</gydF4y2Basurname> <given-names> 美国年代。</ggydF4y2Baiven-names> </name> </person-group> <source> <italic> 粉末和散装固体的安全处理指南</gydF4y2Baitalic> <year> 2005</gydF4y2Bayear> <publisher-loc> 纽约</gydF4y2Bapublisher-loc> <publisher-name> 美国化学工程师学会化学过程安全中心</gydF4y2Bapublisher-name> </element-citation> </ref> <ref id="B5" content-type="inproceedings"> <label>5</gydF4y2Balabel> <element-citation publication-type="confproc"> <person-group person-group-type="author"> <name> <surname> 沙洛姆</gydF4y2Basurname> <given-names> 一个。</ggydF4y2Baiven-names> </name> <name> <surname> 模仿</gydF4y2Basurname> <given-names> H。</ggydF4y2Baiven-names> </name> <name> <surname> Kivity</gydF4y2Basurname> <given-names> M。</ggydF4y2Baiven-names> </name> <name> <surname> 霍洛维茨</gydF4y2Basurname> <given-names> D。</ggydF4y2Baiven-names> </name> </person-group> <article-title> 纳米铝对复合推进剂性能的影响</一个rticle-title> <conf-name> 第41届AIAA/ASME/SAE/ASEE联合推进会议和展览</gydF4y2Baconf-name> <conf-date> 2005年7月</gydF4y2Baconf-date> <conf-loc> 亚利桑那州图森市</gydF4y2Baconf-loc> <pub-id pub-id-type="doi"> 10.2514/6.2005 -3604</gydF4y2Bapub-id> </element-citation> </ref> <ref id="B6" content-type="inproceedings"> <label>6</gydF4y2Balabel> <element-citation publication-type="confproc"> <person-group person-group-type="author"> <name> <surname> 锂</gydF4y2Basurname> <given-names> s</ggydF4y2Baiven-names> </name> <name> <surname> 林</gydF4y2Basurname> <given-names> Z。</ggydF4y2Baiven-names> </name> <name> <surname> 王</gydF4y2Basurname> <given-names> T</ggydF4y2Baiven-names> </name> <name> <surname> 太阳</gydF4y2Basurname> <given-names> Y。</ggydF4y2Baiven-names> </name> <name> <surname> 汉</gydF4y2Basurname> <given-names> X。</ggydF4y2Baiven-names> </name> <name> <surname> 余</gydF4y2Basurname> <given-names> s</ggydF4y2Baiven-names> </name> </person-group> <article-title> 铝粒径对高燃速高能推进剂燃烧特性的影响</一个rticle-title> <conf-name> 第42届AIAA/ASME/SAE/ASEE联合推进大会暨展览会</gydF4y2Baconf-name> <conf-date> 2006年7月</gydF4y2Baconf-date> <conf-loc> 加州萨克拉门托</gydF4y2Baconf-loc> <pub-id pub-id-type="doi"> 10.2514/6.2006-4930</gydF4y2Bapub-id> </element-citation> </ref> <ref id="B7" content-type="article"> <label>7</gydF4y2Balabel> <element-citation publication-type="journal"> <person-group person-group-type="author"> <name> <surname> 约瑟夫</gydF4y2Basurname> <given-names> G</ggydF4y2Baiven-names> </name> <name> <surname> CSB危险调查组</gydF4y2Basurname> </name> </person-group> <article-title> 可燃粉尘:一种严重的工业危害</一个rticle-title> <source> <italic> 危险材料杂志</gydF4y2Baitalic> <year> 2007</gydF4y2Bayear> <volume> 142</gydF4y2Bavolume> <issue> 3.</gydF4y2Baissue> <fpage> 589</gydF4y2Bafpage> <lpage> 591</gydF4y2Balpage> <pub-id pub-id-type="doi"> 10.1016 / j.jhazmat.2006.06.127</gydF4y2Bapub-id> <pub-id pub-id-type="other"> 2-s2.0-33947386649</gydF4y2Bapub-id> <pub-id pub-id-type="pmid"> 16971043</gydF4y2Bapub-id> </element-citation> </ref> <ref id="B8" content-type="article"> <label>8</gydF4y2Balabel> <element-citation publication-type="journal"> <person-group person-group-type="author"> <name> <surname> Marmo</gydF4y2Basurname> <given-names> l</ggydF4y2Baiven-names> </name> <name> <surname> 卡瓦莱罗</gydF4y2Basurname> <given-names> D。</ggydF4y2Baiven-names> </name> <name> <surname> Debernardi</gydF4y2Basurname> <given-names> m . L。</ggydF4y2Baiven-names> </name> </person-group> <article-title> 金属加工中铝粉尘爆炸危险性分析</一个rticle-title> <source> <italic> 过程工业损失预防杂志</gydF4y2Baitalic> <year> 2004</gydF4y2Bayear> <volume> 17</gydF4y2Bavolume> <issue> 6</gydF4y2Baissue> <fpage> 449</gydF4y2Bafpage> <lpage> 465</gydF4y2Balpage> <pub-id pub-id-type="doi"> 10.1016 / j.jlp.2004.07.004</gydF4y2Bapub-id> <pub-id pub-id-type="other"> 2 - s2.0 - 9244230659</gydF4y2Bapub-id> </element-citation> </ref> <ref id="B9" content-type="article"> <label>9</gydF4y2Balabel> <element-citation publication-type="journal"> <person-group person-group-type="author"> <name> <surname> 锂</gydF4y2Basurname> <given-names> G</ggydF4y2Baiven-names> </name> <name> <surname> 杨</gydF4y2Basurname> <given-names> h . X。</ggydF4y2Baiven-names> </name> <name> <surname> 元</gydF4y2Basurname> <given-names> c . M。</ggydF4y2Baiven-names> </name> <name> <surname> 埃克霍夫</gydF4y2Basurname> <given-names> r·K。</ggydF4y2Baiven-names> </name> </person-group> <article-title> 中国发生灾难性的铝合金粉尘爆炸</一个rticle-title> <source> <italic> 过程工业损失预防杂志</gydF4y2Baitalic> <year> 2016</gydF4y2Bayear> <volume> 39</gydF4y2Bavolume> <fpage> 121</gydF4y2Bafpage> <lpage> 130</gydF4y2Balpage> <pub-id pub-id-type="doi"> 10.1016 / j.jlp.2015.11.013</gydF4y2Bapub-id> <pub-id pub-id-type="other"> 2 - s2.0 - 84949210259</gydF4y2Bapub-id> </element-citation> </ref> <ref id="B10" content-type="article"> <label>10</gydF4y2Balabel> <element-citation publication-type="journal"> <person-group person-group-type="author"> <name> <surname> 马丁</gydF4y2Basurname> <given-names> C。</ggydF4y2Baiven-names> </name> <name> <surname> 彗星</gydF4y2Basurname> <given-names> M。</ggydF4y2Baiven-names> </name> <name> <surname> 施耐尔</gydF4y2Basurname> <given-names> F</ggydF4y2Baiven-names> </name> <name> <surname> Berthe</gydF4y2Basurname> <given-names> j·E。</ggydF4y2Baiven-names> </name> <name> <surname> 斯皮策</gydF4y2Basurname> <given-names> D。</ggydF4y2Baiven-names> </name> </person-group> <article-title> 纳米铝粉:一种需要小心处理的物质</一个rticle-title> <source> <italic> 危险材料杂志</gydF4y2Baitalic> <year> 2018</gydF4y2Bayear> <volume> 342</gydF4y2Bavolume> <fpage> 347</gydF4y2Bafpage> <lpage> 352</gydF4y2Balpage> <pub-id pub-id-type="doi"> 10.1016 / j.jhazmat.2017.08.018</gydF4y2Bapub-id> <pub-id pub-id-type="other"> 2-s2.0-85028307129</gydF4y2Bapub-id> <pub-id pub-id-type="pmid"> 28850912</gydF4y2Bapub-id> </element-citation> </ref> <ref id="B11" content-type="article"> <label>11</gydF4y2Balabel> <element-citation publication-type="journal"> <person-group person-group-type="author"> <name> <surname> 锂</gydF4y2Basurname> <given-names> Q</ggydF4y2Baiven-names> </name> <name> <surname> 林</gydF4y2Basurname> <given-names> B。</ggydF4y2Baiven-names> </name> <name> <surname> 锂</gydF4y2Basurname> <given-names> W。</ggydF4y2Baiven-names> </name> <name> <surname> 翟</gydF4y2Basurname> <given-names> C。</ggydF4y2Baiven-names> </name> <name> <surname> 朱</gydF4y2Basurname> <given-names> C。</ggydF4y2Baiven-names> </name> </person-group> <article-title> 纳米铝粉-空气混合物在20l球形容器中的爆炸特性</一个rticle-title> <source> <italic> 粉末技术</gydF4y2Baitalic> <year> 2011</gydF4y2Bayear> <volume> 212</gydF4y2Bavolume> <issue> 2</gydF4y2Baissue> <fpage> 303</gydF4y2Bafpage> <lpage> 309</gydF4y2Balpage> <pub-id pub-id-type="doi"> 10.1016 / j.powtec.2011.04.038</gydF4y2Bapub-id> <pub-id pub-id-type="other"> 2-s2.0-79960641900</gydF4y2Bapub-id> </element-citation> </ref> <ref id="B12" content-type="article"> <label>12</gydF4y2Balabel> <element-citation publication-type="journal"> <person-group person-group-type="author"> <name> <surname> 他</gydF4y2Basurname> <given-names> 博士。</ggydF4y2Baiven-names> </name> <name> <surname> 普里</gydF4y2Basurname> <given-names> P</ggydF4y2Baiven-names> </name> <name> <surname> 杨</gydF4y2Basurname> <given-names> V。</ggydF4y2Baiven-names> </name> </person-group> <article-title> 纳米级新生和钝化铝粒子的自燃性</一个rticle-title> <source> <italic> 燃烧和火焰</gydF4y2Baitalic> <year> 2013</gydF4y2Bayear> <volume> 160</gydF4y2Bavolume> <issue> 9</gydF4y2Baissue> <fpage> 1870</gydF4y2Bafpage> <lpage> 1875</gydF4y2Balpage> <pub-id pub-id-type="doi"> 10.1016/j.2013.03.031</gydF4y2Bapub-id> <pub-id pub-id-type="other"> 2 - s2.0 - 84879414368</gydF4y2Bapub-id> </element-citation> </ref> <ref id="B13" content-type="article"> <label>13</gydF4y2Balabel> <element-citation publication-type="journal"> <person-group person-group-type="author"> <name> <surname> 里沙</gydF4y2Basurname> <given-names> G.A。</ggydF4y2Baiven-names> </name> <name> <surname> 儿子</gydF4y2Basurname> <given-names> 美国F。</ggydF4y2Baiven-names> </name> <name> <surname> 耶特</gydF4y2Basurname> <given-names> r。</ggydF4y2Baiven-names> </name> <name> <surname> 杨</gydF4y2Basurname> <given-names> V。</ggydF4y2Baiven-names> </name> <name> <surname> 同一年</gydF4y2Basurname> <given-names> b . C。</ggydF4y2Baiven-names> </name> </person-group> <article-title> 纳米铝与液态水的燃烧</一个rticle-title> <source> <italic> 燃烧研究所论文集</gydF4y2Baitalic> <year> 2007</gydF4y2Bayear> <volume> 31</gydF4y2Bavolume> <issue> 2</gydF4y2Baissue> <fpage> 2029</gydF4y2Bafpage> <lpage> 2036</gydF4y2Balpage> <pub-id pub-id-type="doi"> 10.1016 / j.proci.2006.08.056</gydF4y2Bapub-id> <pub-id pub-id-type="other"> 2-s2.0-34047098588</gydF4y2Bapub-id> </element-citation> </ref> <ref id="B14" content-type="article"> <label>14</gydF4y2Balabel> <element-citation publication-type="journal"> <person-group person-group-type="author"> <name> <surname> Trunov</gydF4y2Basurname> <given-names> m·A。</ggydF4y2Baiven-names> </name> <name> <surname> 舍尼茨</gydF4y2Basurname> <given-names> M。</ggydF4y2Baiven-names> </name> <name> <surname> Dreizin</gydF4y2Basurname> <given-names> e . L。</ggydF4y2Baiven-names> </name> </person-group> <article-title> 氧化铝层中多态相变对铝颗粒点火的影响</一个rticle-title> <source> <italic> 燃烧理论与模型</gydF4y2Baitalic> <year> 2006</gydF4y2Bayear> <volume> 10</gydF4y2Bavolume> <issue> 4</gydF4y2Baissue> <fpage> 603</gydF4y2Bafpage> <lpage> 623</gydF4y2Balpage> <pub-id pub-id-type="doi"> 10.1080 / 13647830600578506</gydF4y2Bapub-id> <pub-id pub-id-type="other"> 2-s2.0-33747147390</gydF4y2Bapub-id> </element-citation> </ref> <ref id="B15" content-type="article"> <label>15</gydF4y2Balabel> <element-citation publication-type="journal"> <person-group person-group-type="author"> <name> <surname> 弗里德曼</gydF4y2Basurname> <given-names> R</ggydF4y2Baiven-names> </name> <name> <surname> 马č埃克</gydF4y2Basurname> <given-names> 一个。</ggydF4y2Baiven-names> </name> </person-group> <article-title> 铝颗粒在高温环境气体中的点火和燃烧</一个rticle-title> <source> <italic> 燃烧和火焰</gydF4y2Baitalic> <year> 1962</gydF4y2Bayear> <volume> 6</gydF4y2Bavolume> <fpage> 9</gydF4y2Bafpage> <lpage> 19</gydF4y2Balpage> <pub-id pub-id-type="doi"> 10.1016 / 0010 - 2180 (62) 90062 - 7</gydF4y2Bapub-id> </element-citation> </ref> <ref id="B16" content-type="article"> <label>16</gydF4y2Balabel> <element-citation publication-type="journal"> <person-group person-group-type="author"> <name> <surname> Baudry</gydF4y2Basurname> <given-names> G</ggydF4y2Baiven-names> </name> <name> <surname> 伯纳德</gydF4y2Basurname> <given-names> s</ggydF4y2Baiven-names> </name> <name> <surname> 吉拉德</gydF4y2Basurname> <given-names> P</ggydF4y2Baiven-names> </name> </person-group> <article-title> 氧化铝含量对铝粉点火能的影响</一个rticle-title> <source> <italic> 过程工业损失预防杂志</gydF4y2Baitalic> <year> 2007</gydF4y2Bayear> <volume> 20</gydF4y2Bavolume> <issue> 4 - 6</gydF4y2Baissue> <fpage> 330</gydF4y2Bafpage> <lpage> 336</gydF4y2Balpage> <pub-id pub-id-type="doi"> 10.1016 / j.jlp.2007.04.025</gydF4y2Bapub-id> <pub-id pub-id-type="other"> 2 - s2.0 - 34548431762</gydF4y2Bapub-id> </element-citation> </ref> <ref id="B17" content-type="article"> <label>17</gydF4y2Balabel> <element-citation publication-type="journal"> <person-group person-group-type="author"> <name> <surname> 姜</gydF4y2Basurname> <given-names> Z。</ggydF4y2Baiven-names> </name> <name> <surname> 周润发</gydF4y2Basurname> <given-names> w·K。</ggydF4y2Baiven-names> </name> <name> <surname> 锂</gydF4y2Basurname> <given-names> 美国F。</ggydF4y2Baiven-names> </name> </person-group> <article-title> 新型洁净灭火剂添加剂的研究进展</一个rticle-title> <source> <italic> 环境工程科学</gydF4y2Baitalic> <year> 2007</gydF4y2Bayear> <volume> 24</gydF4y2Bavolume> <issue> 5</gydF4y2Baissue> <fpage> 663</gydF4y2Bafpage> <lpage> 674</gydF4y2Balpage> <pub-id pub-id-type="doi"> 10.1089/ees.2006.0138</gydF4y2Bapub-id> <pub-id pub-id-type="other"> 2-s2.0-34248561971</gydF4y2Bapub-id> </element-citation> </ref> <ref id="B18" content-type="article"> <label>18</gydF4y2Balabel> <element-citation publication-type="journal"> <person-group person-group-type="author"> <name> <surname> 托马斯</gydF4y2Basurname> <given-names> g . O。</ggydF4y2Baiven-names> </name> </person-group> <article-title> 在水喷雾减少爆炸所需的条件下</一个rticle-title> <source> <italic> 工艺安全与环保</gydF4y2Baitalic> <year> 2000</gydF4y2Bayear> <volume> 78</gydF4y2Bavolume> <issue> 5</gydF4y2Baissue> <fpage> 339</gydF4y2Bafpage> <lpage> 354</gydF4y2Balpage> <pub-id pub-id-type="doi"> 10.1205/095758200530862</gydF4y2Bapub-id> <pub-id pub-id-type="other"> 2 - s2.0 - 0034275175</gydF4y2Bapub-id> </element-citation> </ref> <ref id="B19" content-type="incollection"> <label>19</gydF4y2Balabel> <element-citation publication-type="book"> <person-group person-group-type="author"> <name> <surname> 美国材料试验学会</gydF4y2Basurname> </name> </person-group> <article-title> 尘云爆炸性的标准试验方法</一个rticle-title> <source> <italic> ASTM年度标准书</gydF4y2Baitalic> <year> 2010</gydF4y2Bayear> <publisher-loc> ,西肯肖霍肯的爸爸</gydF4y2Bapublisher-loc> <publisher-name> 美国测试和材料学会</gydF4y2Bapublisher-name> </element-citation> </ref> <ref id="B20" content-type="incollection"> <label>20</gydF4y2Balabel> <element-citation publication-type="book"> <person-group person-group-type="author"> <name> <surname> 美国材料试验学会</gydF4y2Basurname> </name> </person-group> <article-title> 可燃粉尘最小爆炸浓度的标准试验方法</一个rticle-title> <source> <italic> ASTM年度标准书</gydF4y2Baitalic> <year> 2007</gydF4y2Bayear> <publisher-loc> ,西肯肖霍肯的爸爸</gydF4y2Bapublisher-loc> <publisher-name> 美国测试和材料学会</gydF4y2Bapublisher-name> </element-citation> </ref> <ref id="B21" content-type="misc"> <label>21</gydF4y2Balabel> <element-citation publication-type="other"> <person-group person-group-type="author"> <name> <surname> 国家质量监督检验检疫总局</gydF4y2Basurname> </name> </person-group> <article-title> 粉尘云爆炸最小浓度的测定</一个rticle-title> <source> <italic> GB/T 16425</gydF4y2Baitalic> <year> 1996</gydF4y2Bayear> <publisher-loc> 北京</gydF4y2Bapublisher-loc> <publisher-name> 中华人民共和国煤炭工业部</gydF4y2Bapublisher-name> </element-citation> </ref> <ref id="B22" content-type="misc"> <label>22</gydF4y2Balabel> <element-citation publication-type="other"> <person-group person-group-type="author"> <name> <surname> 国家质量监督检验检疫总局</gydF4y2Basurname> </name> </person-group> <article-title> 尘云最大爆炸压力和最大升压率的确定</一个rticle-title> <source> <italic> GB/T 16426</gydF4y2Baitalic> <year> 1996</gydF4y2Bayear> <publisher-loc> 北京</gydF4y2Bapublisher-loc> <publisher-name> 中华人民共和国煤炭工业部</gydF4y2Bapublisher-name> </element-citation> </ref> <ref id="B23" content-type="misc"> <label>23</gydF4y2Balabel> <element-citation publication-type="other"> <person-group person-group-type="author"> <name> <surname> 欧洲标准化委员会</gydF4y2Basurname> </name> </person-group> <article-title> 粉尘云爆炸特性的测定。第1部分:粉尘云最大爆炸压力(Pmax)的测定</一个rticle-title> <source> <italic> EN 14034 - 1。伦敦:英国标准</gydF4y2Baitalic> <year> 2004</gydF4y2Bayear> </element-citation> </ref> <ref id="B24" content-type="misc"> <label>24</gydF4y2Balabel> <element-citation publication-type="other"> <person-group person-group-type="author"> <name> <surname> 欧洲标准化委员会</gydF4y2Basurname> </name> </person-group> <article-title> 粉尘云爆炸特性的测定。第2部分:粉尘云最大爆炸压力上升速率(dp/dt)的测定</一个rticle-title> <source> <italic> EN 14034-2.伦敦:英国标准</gydF4y2Baitalic> <year> 2006</gydF4y2Bayear> </element-citation> </ref> <ref id="B25" content-type="misc"> <label>25</gydF4y2Balabel> <element-citation publication-type="other"> <person-group person-group-type="author"> <name> <surname> 欧洲标准化委员会</gydF4y2Basurname> </name> </person-group> <article-title> 粉尘云爆炸特性的测定。第3部分:粉尘云爆炸下限LEL的测定</一个rticle-title> <source> <italic> EN 14034-3.伦敦:英国标准</gydF4y2Baitalic> <year> 2006</gydF4y2Bayear> </element-citation> </ref> <ref id="B26" content-type="article"> <label>26</gydF4y2Balabel> <element-citation publication-type="journal"> <person-group person-group-type="author"> <name> <surname> 朱</gydF4y2Basurname> <given-names> B。</ggydF4y2Baiven-names> </name> <name> <surname> 王</gydF4y2Basurname> <given-names> Q</ggydF4y2Baiven-names> </name> <name> <surname> 太阳</gydF4y2Basurname> <given-names> Y。</ggydF4y2Baiven-names> </name> <name> <surname> 贾</gydF4y2Basurname> <given-names> T</ggydF4y2Baiven-names> </name> </person-group> <article-title> 微米级铝粉在CO2中的热反应特性</一个rticle-title> <source> <italic> 物理化学学报B</gydF4y2Baitalic> <year> 2016</gydF4y2Bayear> <volume> 10</gydF4y2Bavolume> <issue> 4</gydF4y2Baissue> <fpage> 644</gydF4y2Bafpage> <lpage> 650</gydF4y2Balpage> <pub-id pub-id-type="doi"> 10.1134 / s1990793116040163</gydF4y2Bapub-id> <pub-id pub-id-type="other"> 2 - s2.0 - 84987925158</gydF4y2Bapub-id> </element-citation> </ref> <ref id="B27" content-type="article"> <label>27</gydF4y2Balabel> <element-citation publication-type="journal"> <person-group person-group-type="author"> <name> <surname> 元</gydF4y2Basurname> <given-names> J。</ggydF4y2Baiven-names> </name> <name> <surname> 魏</gydF4y2Basurname> <given-names> W。</ggydF4y2Baiven-names> </name> <name> <surname> 黄</gydF4y2Basurname> <given-names> W。</ggydF4y2Baiven-names> </name> <name> <surname> 杜</gydF4y2Basurname> <given-names> B。</ggydF4y2Baiven-names> </name> <name> <surname> 刘</gydF4y2Basurname> <given-names> l</ggydF4y2Baiven-names> </name> <name> <surname> 朱</gydF4y2Basurname> <given-names> J。</ggydF4y2Baiven-names> </name> </person-group> <article-title> 煤尘爆炸中水分作用的实验研究</一个rticle-title> <source> <italic> 台湾化学工程学会学报</gydF4y2Baitalic> <year> 2014</gydF4y2Bayear> <volume> 45</gydF4y2Bavolume> <issue> 5</gydF4y2Baissue> <fpage> 2325</gydF4y2Bafpage> <lpage> 2333</gydF4y2Balpage> <pub-id pub-id-type="doi"> 10.1016/j.jtice.2014.05.022</gydF4y2Bapub-id> <pub-id pub-id-type="other"> 2 - s2.0 - 84922428668</gydF4y2Bapub-id> </element-citation> </ref> <ref id="B28" content-type="article"> <label>28</gydF4y2Balabel> <element-citation publication-type="journal"> <person-group person-group-type="author"> <name> <surname> 特拉奥雷</gydF4y2Basurname> <given-names> M。</ggydF4y2Baiven-names> </name> <name> <surname> 迪福</gydF4y2Basurname> <given-names> O。</ggydF4y2Baiven-names> </name> <name> <surname> 佩林</gydF4y2Basurname> <given-names> l</ggydF4y2Baiven-names> </name> <name> <surname> 查泽莱</gydF4y2Basurname> <given-names> s</ggydF4y2Baiven-names> </name> <name> <surname> 托马斯</gydF4y2Basurname> <given-names> D。</ggydF4y2Baiven-names> </name> </person-group> <article-title> 粉尘爆炸:应如何考虑湿度的影响?</一个rticle-title> <source> <italic> 工艺安全与环保</gydF4y2Baitalic> <year> 2009</gydF4y2Bayear> <volume> 87</gydF4y2Bavolume> <issue> 1</gydF4y2Baissue> <fpage> 14</gydF4y2Bafpage> <lpage> 20</gydF4y2Balpage> <pub-id pub-id-type="doi"> 10.1016/j.psep.2008.08.001</gydF4y2Bapub-id> <pub-id pub-id-type="other"> 2 - s2.0 - 58249090354</gydF4y2Bapub-id> </element-citation> </ref> <ref id="B29" content-type="techreport"> <label>29</gydF4y2Balabel> <element-citation publication-type="gov"> <person-group person-group-type="author"> <name> <surname> 大冢</gydF4y2Basurname> <given-names> T</ggydF4y2Baiven-names> </name> <name> <surname> Itagaki</gydF4y2Basurname> <given-names> H。</ggydF4y2Baiven-names> </name> </person-group> <article-title> 铝尘在水蒸汽中的爆炸</一个rticle-title> <source> <italic> 日本:国家工业安全研究所</gydF4y2Baitalic> <year> 2004</gydF4y2Bayear> </element-citation> </ref> <ref id="B30" content-type="article"> <label>30</gydF4y2Balabel> <element-citation publication-type="journal"> <person-group person-group-type="author"> <name> <surname> 郑</gydF4y2Basurname> <given-names> X。</ggydF4y2Baiven-names> </name> <name> <surname> 徐</gydF4y2Basurname> <given-names> K。</ggydF4y2Baiven-names> </name> <name> <surname> 王</gydF4y2Basurname> <given-names> Y。</ggydF4y2Baiven-names> </name> <name> <surname> 王</gydF4y2Basurname> <given-names> Q</ggydF4y2Baiven-names> </name> </person-group> <article-title> 防止湿式除尘系统氢爆事故的抑氢方法</一个rticle-title> <source> <italic> 国际氢能杂志</gydF4y2Baitalic> <year> 2019</gydF4y2Bayear> <volume> 44</gydF4y2Bavolume> <issue> 31</gydF4y2Baissue> <fpage> 17195</gydF4y2Bafpage> <lpage> 17201</gydF4y2Balpage> <pub-id pub-id-type="doi"> 10.1016/j.ijhydene.2019.04.217</gydF4y2Bapub-id> <pub-id pub-id-type="other"> 2 - s2.0 - 85065582349</gydF4y2Bapub-id> </element-citation> </ref> <ref id="B31" content-type="article"> <label>31</gydF4y2Balabel> <element-citation publication-type="journal"> <person-group person-group-type="author"> <name> <surname> 叶</gydF4y2Basurname> <given-names> s</ggydF4y2Baiven-names> </name> <name> <surname> 吴</gydF4y2Basurname> <given-names> j . H。</ggydF4y2Baiven-names> </name> <name> <surname> 雪</gydF4y2Basurname> <given-names> m·A。</ggydF4y2Baiven-names> </name> <name> <surname> 王</gydF4y2Basurname> <given-names> Y.P。</ggydF4y2Baiven-names> </name> <name> <surname> 胡</gydF4y2Basurname> <given-names> D。</ggydF4y2Baiven-names> </name> <name> <surname> 杨</gydF4y2Basurname> <given-names> x D。</ggydF4y2Baiven-names> </name> </person-group> <article-title> 伪纳米铝化微循环-[CH2N(NO2)]3冲击波燃烧光谱研究</一个rticle-title> <source> <italic> 物理学报D应用物理</gydF4y2Baitalic> <year> 2008</gydF4y2Bayear> <volume> 41</gydF4y2Bavolume> <issue> 23</gydF4y2Baissue> <fpage> 235501</gydF4y2Bafpage> <pub-id pub-id-type="doi"> 10.1088 / 0022 - 3727/41/23/235501</gydF4y2Bapub-id> <pub-id pub-id-type="other"> 2-s2.0-68349137593</gydF4y2Bapub-id> </element-citation> </ref> <ref id="B32" content-type="article"> <label>32</gydF4y2Balabel> <element-citation publication-type="journal"> <person-group person-group-type="author"> <name> <surname> 梁</gydF4y2Basurname> <given-names> Z。</ggydF4y2Baiven-names> </name> <name> <surname> Qing-jie</gydF4y2Basurname> <given-names> J。</ggydF4y2Baiven-names> </name> <name> <surname> 回族</gydF4y2Basurname> <given-names> R</ggydF4y2Baiven-names> </name> <name> <surname> 清</gydF4y2Basurname> <given-names> Z。</ggydF4y2Baiven-names> </name> </person-group> <article-title> 微米铝粉氧化膜厚度及活性的研究</一个rticle-title> <source> <italic> 北京理工大学学报</gydF4y2Baitalic> <year> 2012</gydF4y2Bayear> <volume> 32</gydF4y2Bavolume> <issue> 2</gydF4y2Baissue> <fpage> 206</gydF4y2Bafpage> <lpage> 211</gydF4y2Balpage> </element-citation> </ref> <ref id="B33" content-type="article"> <label>33</gydF4y2Balabel> <element-citation publication-type="journal"> <person-group person-group-type="author"> <name> <surname> 离去</gydF4y2Basurname> <given-names> j·E。</ggydF4y2Baiven-names> </name> <name> <surname> Chatrathi</gydF4y2Basurname> <given-names> K。</ggydF4y2Baiven-names> </name> <name> <surname> Cashdollar</gydF4y2Basurname> <given-names> k . L。</ggydF4y2Baiven-names> </name> </person-group> <article-title> 20升和1米内的粉尘的燃烧极限测量<gydF4y2Basup>3.</gydF4y2Basup>容器</一个rticle-title> <source> <italic> 过程工业损失预防杂志</gydF4y2Baitalic> <year> 2000</gydF4y2Bayear> <volume> 13</gydF4y2Bavolume> <issue> 3-5</gydF4y2Baissue> <fpage> 209</gydF4y2Bafpage> <lpage> 219</gydF4y2Balpage> <pub-id pub-id-type="doi"> 10.1016 / s0950 - 4230 (99) 00043 - 1</gydF4y2Bapub-id> <pub-id pub-id-type="other"> 2 - s2.0 - 0034188766</gydF4y2Bapub-id> </element-citation> </ref> <ref id="B34" content-type="article"> <label>34</gydF4y2Balabel> <element-citation publication-type="journal"> <person-group person-group-type="author"> <name> <surname> Marmo</gydF4y2Basurname> <given-names> l</ggydF4y2Baiven-names> </name> <name> <surname> 里奇奥</gydF4y2Basurname> <given-names> D。</ggydF4y2Baiven-names> </name> <name> <surname> Danzi</gydF4y2Basurname> <given-names> E</ggydF4y2Baiven-names> </name> </person-group> <article-title> 金属废料粉尘的爆炸性</一个rticle-title> <source> <italic> 工艺安全与环保</gydF4y2Baitalic> <year> 2017</gydF4y2Bayear> <volume> 107</gydF4y2Bavolume> <fpage> 69</gydF4y2Bafpage> <lpage> 80</gydF4y2Balpage> <pub-id pub-id-type="doi"> 10.1016/j.psep.2017.01.011</gydF4y2Bapub-id> <pub-id pub-id-type="other"> 2-s2.0-8501368407</gydF4y2Bapub-id> </element-citation> </ref> <ref id="B35" content-type="book"> <label>35</gydF4y2Balabel> <element-citation publication-type="book"> <person-group person-group-type="author"> <name> <surname> 埃克霍夫</gydF4y2Basurname> <given-names> r·K。</ggydF4y2Baiven-names> </name> </person-group> <source> <italic> 过程工业中的粉尘爆炸:粉尘危害的识别、评估和控制</gydF4y2Baitalic> <year> 2003</gydF4y2Bayear> <publisher-name> 爱思维尔</gydF4y2Bapublisher-name> </element-citation> </ref> <ref id="B36" content-type="article"> <label>36</gydF4y2Balabel> <element-citation publication-type="journal"> <person-group person-group-type="author"> <name> <surname> 霍华德</gydF4y2Basurname> <given-names> J.B。</ggydF4y2Baiven-names> </name> <name> <surname> 埃森海</gydF4y2Basurname> <given-names> R.H。</ggydF4y2Baiven-names> </name> </person-group> <article-title> 煤粉火焰中的燃烧机理</一个rticle-title> <source> <italic> 燃烧和火焰</gydF4y2Baitalic> <year> 1966</gydF4y2Bayear> <volume> 10</gydF4y2Bavolume> <issue> 1</gydF4y2Baissue> <fpage> 92</gydF4y2Bafpage> <lpage> 93</gydF4y2Balpage> <pub-id pub-id-type="doi"> 10.1016/0010-2180(66)90037-X</gydF4y2Bapub-id> <pub-id pub-id-type="other"> 2-s2.0-34547355369</gydF4y2Bapub-id> </element-citation> </ref> </ref-list> </back> </article> </body> </html>